Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Numerical Investigation of Droplets Condensation on a Windshield: Prediction of Fogging Behavior

2015-04-14
2015-01-0360
An accurate model to predict the formation of fogging and defogging which occurs for low windshield temperatures is helpful for designing the air-conditioning system in a car. Using a multiphase flow approach and additional user-defined functions within the commercial CFD-software STAR-CCM+, a model which is able to calculate the amount of water droplets on the windshield from condensation and which causes the fogging is set up. Different parameters like relative humidity, air temperature, mass flow rate and droplet distributions are considered. Because of the condition of the windshield's surface, the condensation occurs as tiny droplets with different sizes. The distribution of these very small droplets must be obtained to estimate numerically the heat transfer coefficient during the condensation process to predict the defogging time.
Technical Paper

Synergetic 1D-3D-Coupling in Engine Development Part I: Verification of Concept

2015-04-14
2015-01-0341
This paper introduces an innovative approach, named synergetic 1D-3D-Coupling, by using synergy effects of 1D and 3D simulation in order to bring down modeling and simulation efforts. At the same time the methodology sustains the spatial resolution of a 3D model. This goal is reached by reducing the 3D fluid side with its time consuming continuity, momentum, energy and turbulence equations to a simple but precise 1D model. Because of the solid structure staying three dimensional, heat flux direction and spatial resolution have 3D accuracy but short calculation times due to the simple heat diffusion equation to be solved. The 1D model is represented by an automatically generated equation system which is capable of considering transient effects. The energy transfer between 1D fluid model and 3D structure model is realized through a neutral 1D-3D-coupling program and the application of the fluid element specific Nusselt correlations.
Journal Article

Timing Evaluation in E/E Architecture Design at BMW

2014-04-01
2014-01-0317
Timing evaluation methods help to design a robust and extendible E/E architecture (electric/electronic). BMW has introduced the systematic application of such methods in the E/E design process within the last three years. Meanwhile, most of the architectural changes are now verified by a tool-based, automatic real-time analysis. This has increased the accuracy of the network planning and productivity of the BMW network department. In this paper, we give an overview of the actual status of timing evaluations in BMW's E/E architecture design. We discuss acceptance criteria, analysis metrics, and design rules, as far as these are related to timing. We look specifically at automation options, as these improve the productivity further. We will see that timing analysis has matured and should be mandatory for application in mass production E/E architecture development. At the same time, there is room for future improvements.
Journal Article

Validation and Sensitivity Studies for SAE J2601, the Light Duty Vehicle Hydrogen Fueling Standard

2014-04-01
2014-01-1990
The worldwide automotive industry is currently preparing for a market introduction of hydrogen-fueled powertrains. These powertrains in fuel cell electric vehicles (FCEVs) offer many advantages: high efficiency, zero tailpipe emissions, reduced greenhouse gas footprint, and use of domestic and renewable energy sources. To realize these benefits, hydrogen vehicles must be competitive with conventional vehicles with regards to fueling time and vehicle range. A key to maximizing the vehicle's driving range is to ensure that the fueling process achieves a complete fill to the rated Compressed Hydrogen Storage System (CHSS) capacity. An optimal process will safely transfer the maximum amount of hydrogen to the vehicle in the shortest amount of time, while staying within the prescribed pressure, temperature, and density limits. The SAE J2601 light duty vehicle fueling standard has been developed to meet these performance objectives under all practical conditions.
Journal Article

Air Spring Air Damper: Modelling and Dynamic Performance in Case of Small Excitations

2013-05-13
2013-01-1922
Air spring systems gain more and more popularity in the automotive industry and with the ever growing demand for comfort nowadays they are almost inevitable. Some significant advantages over conventional steel springs are appealing for commercial vehicles as well as for the modern passenger vehicles in the luxury class. Current production air spring systems exist in combination with hydraulic shock absorbers (integrated or resolved). An alternative is to use the medium air not only as a spring but also as a damper: a so-called air spring air damper. Air spring air dampers are force elements which could be a great step for the chassis technology due to their functionality (frequency selectivity, load levelling, load independent vibration behaviour, load dependent damping). Some of their design which avoid dynamic seals by the using of rubber bellows contribute to a better ride comfort.
Technical Paper

Numerical Simulation of the Transient Heat-Up of a Passenger Vehicle during a Trailer Towing Uphill Drive

2013-04-08
2013-01-0873
In the digital prototype development process of a new Mercedes-Benz, thermal protection is an important task that has to be fulfilled. In the early stages of development, numerical methods are used to detect thermal hotspots in order to protect temperature sensitive parts. These methods involve transient full Vehicle Thermal Management (VTM) simulations to predict dynamic vehicle heat-up during critical load cases. In order to simulate thermal control mechanisms, a coupled 1D to 3D thermal vehicle model is built in which the coolant and oil circuit of the engine, as well as the exhaust flow are captured in detail. When performing a transient 3D VTM analysis, the conduction and radiation phenomena are simulated using a transient structure model while the convective phenomena are co-simulated in a steady state fluid model. Both models are brought to interaction at predetermined points by an automatized coupling method.
Technical Paper

An Approach to Develop Energy Efficient Operation Strategies and Derivation of Requirements for Vehicle Subsystems Using the Vehicle Air Conditioning System as an Example

2013-04-08
2013-01-0568
Rising oil prices and increasing strict emission legislation force vehicle manufacturers to reduce fuel consumption of future vehicles. In order to meet this target, the process of converting fuel into useable energy and the use of this energy by the different energy-consuming vehicle's subsystems have to be examined. Vehicles' subsystems consist of energy-supplying, energy-consuming, and in some cases energy-storing components. Due to the high complexity of these systems and their interaction, optimization of their energy efficiency is a challenging task. By introducing individual operational strategies for each subsystem, it is possible to increase the energy efficiency for a specific function. To further improve the vehicle's overall energy efficiency, holistic control strategies are introduced that distribute the energy between the subsystems intelligently.
Journal Article

Tackling the Complexity of Timing-Relevant Deployment Decisions in Multicore-Based Embedded Automotive Software Systems

2013-04-08
2013-01-1224
Multicore-based ECUs are increasingly used in embedded automotive software systems to allow more demanding automotive applications at moderate cost and energy consumption. Using a high number of parallel processors together with a high number of executed software components results in a practically unmanageable number of deployment alternatives to choose from. However correct deployment is one important step for reaching timing goals and acceptable latency, both also a must to reach safety goals of safety-relevant automotive applications. In this paper we focus at reducing the complexity of deployment decisions during the phases of allocation and scheduling. We tackle this complexity of deployment decisions by a mixed constructive and analytic approach.
Technical Paper

A Numerical Methodology to Compute Temperatures of a Rotating Cardan Shaft

2013-04-08
2013-01-0843
In this paper a new numerical methodology to compute component temperatures of a rotating cardan shaft is described. In general temperatures of the cardan shaft are mainly dominated by radiation from the exhaust gas system and air temperatures in the transmission tunnel and underbody. While driving the cardan shaft is rotating. This yields a uniform temperature distribution of the circumference of the shaft. However most simulation approaches for heat protection are nowadays steady-state computations. In these simulations the rotation of the cardan shaft is not considered. In particular next to the exhaust gas system the distribution of the temperatures of the cardan shaft is not uniform but shows hot temperatures due to radiation at the side facing the exhaust gas system and lower temperatures at the other side. This paper describes a new computational approach that is averaging the radiative and convective heat fluxes circumferentially over bands of the cardan shaft.
Journal Article

Cold Start Effect Phenomena over Zeolite SCR Catalysts for Exhaust Gas Aftertreatment

2013-04-08
2013-01-1064
NH₃/urea SCR is a very effective and widely used technology for the abatement of NOx from diesel exhaust. The SCR mechanism is well understood and the catalyst behavior can be predicted by mathematical models - as long as operation above the temperature limit for AdBlue® injection is considered. The behavior below this level is less understood. During the first seconds up to minutes after cold start, complete NOx abatement can be observed over an SCR catalyst in test bench experiments, together with a significant increase in temperature after the converter (ca. 100 K). In this work these effects have been investigated over a monolith Cu-zeolite SCR catalyst. Concentration step experiments varying NO, NO₂ and H₂O have been carried out in lab scale, starting from room temperature. Further, the interaction of C₃H₆ and CO with NOx over the SCR has been investigated.
Technical Paper

Retrospective on Cubic Equation of State for R134a Refrigerant Used in Automotive Application

2013-01-09
2013-26-0061
The need for a consistent and reliable calculation of thermodynamic property of refrigerants has been a topic of research since the past decade. This paper reports a study of various cubic equations of state for a refrigerant being used in automotive air-conditioning applications. The thermodynamic property of refrigerant 1,1,1,2 tetrafluoroethane (commercially known as R134a) is estimated for this purpose. A comparative analysis is made on three sets of equations of state. They are Redlich Kwong equation (RK), Peng Robinson equation (PR) and Patel Teja equation. It is found that the Patel-Teja and Peng-Robinson equations are accurate in the operating region of automotive air-conditioning system. Using these literature based equations and Maxwell correlations, thermodynamic models are developed. They estimate thermodynamic properties of saturated liquid/vapor, sub-cooled liquid and superheated vapor phases.
Journal Article

Predicted Roughness Perception for Simulated Vehicle Interior Noise

2012-06-13
2012-01-1561
In the past the exterior and interior noise level of vehicles has been largely reduced to follow stricter legislation and due to the demand of the customers. As a consequence, the noise quality and no longer the noise level inside the vehicle plays a crucial role. For an economic development of new powertrains it is important to assess noise quality already in early development stages by the use of simulation. Recent progress in NVH simulation methods of powertrain and vehicle in time and frequency domain provides the basis to pre-calculated sound pressure signals at arbitrary positions in the car interior. Advanced simulation tools for elastic multi-body simulation and novel strategies to measure acoustical transfer paths are combined to achieve this goal. In order to evaluate the obtained sound impression a roughness prediction model has been developed. The proposed roughness model is a continuation of the model published by Hoeldrich and Pflueger.
Technical Paper

Low-speed Boom Noise - Escalating Relevance According to CO2- Targets and High Torque Engines

2012-06-13
2012-01-1547
The increasing shift of drive operation towards efficient engine operation points at very low engine speeds demands a concerted design and tuning of engine, drive-train, assembly attachment and body to avoid annoying low speed boom noise. An additional challenge in this area of conflict is the increasing torque of modern engines at low engine speeds. As an example for a standard passenger car, the modes of operation, which may lead to low speed boom noise, are described. Setting levers along the complete chain of effect are characterised - from cylinder pressure up to the radiating surfaces of the interior. To achieve challenging NVH-targets the application of nonlinear simulation systems is indispensable, in particular in the concept phase of a vehicle. The use of multi-body simulation is presented for a concentrated NVH-optimisation of powertrain and rear axle vibration behaviour to reduce low-speed boom noise. On entire vehicle level hybrid simulation models are useful.
Technical Paper

Realistic Driving Experience of New Vehicle Concepts on the BMW Ride Simulator

2012-06-13
2012-01-1548
Nowadays, a continually growing system complexity due to the development of an increasing number of vehicle concepts in a steadily decreasing development time forces the engineering departments in the automotive industry to a deepened system understanding. The virtual design and validation of individual components from subsystems up to full vehicles becomes an even more significant role. As an answer to the challenge of reducing complete hardware prototypes, the virtual competence in NVH, among other methods, has been improved significantly in the last years. At first, the virtual design and validation of objectified phenomena in analogy to hardware tests via standardized test rigs, e.g. four poster test rig, have been conceived and validated with the so called MBS (Multi Body Systems).
Journal Article

Experimental and Numerical Investigation of the Under Hood Flow with Heat Transfer for a Scaled Tractor-Trailer

2012-04-16
2012-01-0107
Aerodynamic design and thermal management are some of the most important tasks when developing new concepts for the flow around tractor-trailers. Today, both experimental and numerical studies are an integral part of the aerodynamic and thermal design processes. A variety of studies have been conducted how the aerodynamic design reduces the drag coefficient for fuel efficiency as well as for the construction of radiators to provide cooling on tractor-trailers. However, only a few studies cover the combined effect of the aerodynamic and thermal design on the air temperature of the under hood flow [8, 13, 16, 17, 20]. The objective of this study is to analyze the heat transfer through forced convection for a scaled Cab-over-Engine (CoE) tractor-trailer model with under hood flow. Different design concepts are compared to provide low under hood air temperature and efficient cooling of the sub components.
Technical Paper

Simulation Process of the Heat Protection of a Full Vehicle

2012-04-16
2012-01-0635
In this paper the latest status of the Vehicle Thermal Management (VTM) simulation at the Mercedes-Benz Car Group is shown. First of all VTM is nowadays a routine simulation application and secondly it is embedded in a standard process which starts with the CAD data collection and ends with standard reporting of the simulation results and thirdly VTM is now an integrated simulation application in terms of VTM includes the classical underhood-underbody analysis, the analysis of electric/electronic components, the brake temperature analysis and last not least the thermal comfort of passengers. There is also a close link to the tests of vehicle hardware. Beside the operational simulation process there is a process installed which guarantees good quality of the results.
Technical Paper

Using High-Fidelity Multibody Vehicle Models in Real-Time Simulations

2012-04-16
2012-01-0927
Digital or virtual prototyping by means of a multibody simulation model (MBS) is a standard part of the automotive design process. A high-fidelity model is built and often correlated against test data to increase its accuracy. Once built the MBS model can then be used for high fidelity analysis in ride comfort, handling as well as durability. Next to the MBS model, current industry practice is to develop a reduced degree of freedom model for the design and validation of control or intelligent systems. The models used in the control system design are required to execute in hardware-in-the-loop (HIL) simulations where it is necessary to run real-time. The reason for the creation of the reduced degree of freedom models so far has been that the high-fidelity or off-line model does not execute fast enough to be used in an HIL simulation.
Technical Paper

Modeling of Injected Diesel Fuel Conversion and Heat Release in Oxidation Catalyst: 3D-CFD & 1D Channels Approach

2012-04-16
2012-01-1293
A system for controlled heat generation in exhaust pipeline is studied, consisting of fuel injector and oxidation catalyst (plus connecting pipes). A 3D-CFD software (StarCD) coupled with a tailored 1D model of catalytic monolith channel (XMR) are employed for simulations of realistic, fully 3D system geometry. Exhaust gas flow, fuel injection, and distribution at the catalyst inlet is solved by 3D-CFD, while the processes inside individual representative channels are simulated by the effective 1D model. The 3D-CFD software calls iteratively the 1D channel model with proper boundary conditions and solves 3D temperature profile over the monolith, utilizing local enthalpy fluxes (including gas-solid heat transfer and reaction enthalpy) calculated by the 1D channel model. Seven representative hydrocarbons are used for characterisation of Diesel fuel composition with respect to catalytic oxidation kinetics.
Video

Challenges in Automotive Electrification and Powertrain Component Development

2011-11-07
An overview of Daimler?s progression to advance powertrain technology in a growth industry shows many different solutions to improvement in transportation. Daimler continues to make breakthroughs in technology development and application building on 125 years of automotive development. Optimization of current powertrains will enable a significant gain in CO2/mi reductions, that dependent on product mix can be augmented with additional technologies. There is however no bypass to some form of electrification, enabling efficiency gains and alternative forms of power supply. Development of hybrid powertrains continues in an established manner and enhanced development of further electrified powertrains are in development. Organizationally and technically, significant skills and adjustments need to continue to be undertaken enabling OEMs and in particular the supply base to develop optimized solutions efficiently. The outlook is bright for novel component development and innovation.
Technical Paper

Optimization of Process Parameters for Automotive Paint Application

2011-10-06
2011-28-0072
The quality of the paint application in automotive industry depends on several process parameters. Thus, finding an optimal solution based on experimental configuration is tedious and time consuming. A first step to reduce the effort is to model the application within the framework of a simulation environment. In this study, we present an approach for the systematic variation of design parameters of the paint process to quantify their influence on the quality of the paint application. Using that information the design space is reduced by neglecting the parameters with low impact and later used to predict an optimal set of input parameters for an optimal paint application.
X